iVector Approach to Phonotactic Language Recognition
نویسندگان
چکیده
This paper addresses a novel technique for representation and processing of n-gram counts in phonotactic language recognition (LRE): subspace multinomial modelling represents the vectors of n-gram counts by low dimensional vectors of coordinates in total variability subspace, called iVector. Two techniques for iVector scoring are tested: support vector machines (SVM), and logistic regression (LR). Using standard NIST LRE 2009 task as our evaluation set, the latter scoring approach was shown to outperform phonotactic LRE system based on direct SVM classification of n-gram count vectors. The proposed iVector paradigm also shows comparable results to previously proposed PCA-based phonotactic feature extraction.
منابع مشابه
Language Recognition on Albayzin 2010 LRE using PLLR features
Phone Log-Likelihood Ratios (PLLR) have been recently proposed as alternative features to MFCC-SDC for iVector Spoken Language Recognition (SLR). In this paper, PLLR features are first described, and then further evidence of their usefulness for SLR tasks is provided, with a new set of experiments on the Albayzin 2010 LRE dataset, which features wide-band multi speaker TV broadcast speech on si...
متن کاملCombining Weak Tokenisers for Phonotactic Language Recognition in a Resource-Constrained Setting
In the phonotactic approach for language recognition, a phone tokeniser is normally used to transform the audio signal into acoustic tokens. The language identity of the speech is modelled by the occurrence statistics of the decoded tokens. The performance of this approach depends heavily on the quality of the audio tokeniser. A high-quality tokeniser in matched condition is not always availabl...
متن کاملLanguage Recognition on Albayzin 2010 LRE using PLLR features Reconocimiento de la Lengua en Albayzin 2010 LRE utilizando caracteŕısticas PLLR
Phone Log-Likelihood Ratios (PLLR) have been recently proposed as alternative features to MFCC-SDC for iVector Spoken Language Recognition (SLR). In this paper, PLLR features are first described, and then further evidence of their usefulness for SLR tasks is provided, with a new set of experiments on the Albayzin 2010 LRE dataset, which features wide-band multi speaker TV broadcast speech on si...
متن کاملRegularized subspace n-gram model for phonotactic ivector extraction
Phonotactic language identification (LID) by means of n-gram statistics and discriminative classifiers is a popular approach for the LID problem. Low-dimensional representation of the n-gram statistics leads to the use of more diverse and efficient machine learning techniques in the LID. Recently, we proposed phototactic iVector as a low-dimensional representation of the n-gram statistics. In t...
متن کاملFusing language information from diverse data sources for phonotactic language recognition
The baseline approach in building phonotactic language recognition systems is to characterize each language by a single phonotactic model generated from all the available languagespecific training data. When several data sources are available for a given target language, system performance can be improved using language source-dependent phonotactic models. In this case, the common practice is t...
متن کامل